Multi-Scale Analysis of Materials

Digital Image Correlation System (DIC)
- Biaxial test
- Deep-drawing test

Nanoscale QuasiContinuum simulations (<10⁻⁷ m)

Different kinds of mechanical tests (10⁻³ ~ 1 m)

Micro-forming – Size effects on mechanical behavior

- Decreasing the specimen size involves a decrease in the number of grains across the thickness or diameter (t/d or D/d ratio)

Results of experimental tests

- Material Characterization (Base material, welding, HAZ)
- Mechanical behavior
- Fatigue Properties
- Numerical simulations
- Welded pieces
- Critical section

Bridge OPTIBRI Project (>10m)

- Optimal use of High Strength Steel grades within Bridges

Concentrated Solar Power Tower (CSP)

Experimental device used for deep-drawing test (ENSAM Metz)

Force-displacement curves and fractured specimens for deep-drawing tests

Digital Image Correlation (DIC)

Biaxial machine ULg

Axial and transversal strain distributions for a rectangular shape specimen

Numerical modeling – tensile tests of polycrystals

- Fatigue tests by Vibrophore
 - Frequency 148Hz

Experimental device used for deep-drawing test

Force-displacement curves and fractured specimens for deep-drawing tests

An example of nano-indentation's results

Nano-indentation numerical simulation

Stress versus strain

- Atomic configuration is stable
- Atom shuffling at grain boundary

Constitutive law

Strategy of computation

Mesh for the Crystal plasticity FE model

Illustration of bicrystal model

Force – displacement curves and fractured specimens for deep-drawing tests

Three Junction model

Fatigue tests by Vibrophore

- Frequency 148Hz

Contact: Laurent Duchêne, Anne Marie Habraken

- (l.duchene, anne.habraken)@ulg.ac.be
- +32 4 366 93 28, +32 4 366 94 30

Industrial Applications

- Bridge OPTIBRI Project (>10m)
- MEMS System
- Digital Image Correlation System (DIC)
- Biaxial test
- Deep-drawing test

University of Liège, Belgium

Department of ArGenCo – http://www.facscu.ulg.ac.be/cms/c_599551/fr/accueil-argenco

Division MS²F – Research Unit MSM

Contact: Laurent Duchêne, Anne Marie Habraken

(l.duchene, anne.habraken)@ulg.ac.be

+32 4 366 93 28, +32 4 366 94 30

Multi-Scale Analysis of Materials

Nano-Indentation Technique (10⁻⁶ ~ 10⁻⁴ m)

Industrial Applications

- Metallic material unit cell and lattice (Analysis at nanoscale) (Tran et al., COMPLAS 2014)
- Modeling at mesoscale (dimension larger than a few micrometers) (C. Keller et al. Int. J. Plast., 2012)
- Macroscopic tensile test and numerical modeling (P. Flores et al., J. Mat. Proc. Techn., 2010)
- Metalic material unit cell and lattice (Analysis at nanoscale)

C.Keller et al. Int. J. Plast., 2012

Tran et al., COMPLAS 2014

Macroscopic tensile test and numerical modeling (P. Flores et al., J. Mat. Proc. Techn., 2010)

Material and Solid Mechanics (MSM)

Modeling Material Mechanical Behavior at Various Length Scales