Software Development

METAFOR: an object-oriented Finite Element code for the simulation of solids submitted to large deformations
- 2D/3D elements (large strains).
- Implicit/explicit time integration (HHT, Chung Hulbert, ...)
- Thermomechanical coupling (staggered or fully coupled schemes).
- Frictional contact between deformable bodies or analytical surfaces.
- Arbitrary Lagrangian Eulerian formalism.
- Meshing and remeshing procedures.
- Large set of constitutive laws (thermo-elasto-viscoplastic, damage, ...)
- Crack propagation (erosion method).

Other Simulation Codes
- **METALUB**: lubricated rollgap model for the simulation of cold rolling.
- **PFEM**: 2D incompressible fluid solver by the Particle Finite Element method.
- **CUPyDO**: coupling interface of fluid and solid solvers.
- **Waves**: basic C++/python framework for the rapid development of simulation codes.

Crash, Impact & Fracture Simulations

Blade Impact on the Casing of an Aeroengine
- Study of the behaviour of titanium alloys at very high strain rates.
- Composite casings.
- Fan Blade Out simulations.
- Simulation of abradable materials.

Honeycomb Crushing
- Study of an energy absorption element for leading edge slat or fixed leading edge through numerical simulations.

Metal Forming Simulations

Springback Prediction in Roll Forming
- Development of a fast 3D model of industrial forming mills.

Cooling and Straightening of Sheet Piles
- Prediction of the final product shape and the residual stresses.

Biomechanics

Brain Model
- Unstructured FE mesh generation from medical images (MRI scans).
- Simulation of neurosurgery and injuries.

Bone Fracture Simulation
- Prediction of human and animal bone fractures (in collaboration with CHU Liège and the faculty of Veterinary Medicine of ULiège).

Additive Manufacturing

Laser Solid Forming of Ti-6Al-4V Metal Powder
- Activation/Deactivation of finite elements and boundary conditions based on the current laser position.

Snapping Mechanical Metamaterials under Tension
- Dynamic simulation of metamaterials with tunable stiffness manufactured by additive processes.

Fluid Structure Interaction Problems

Vortex-Induced Vibrations (VIV) of a Cantilever
- **CUPyDO**: coupling of specialized solvers (Metafor/SU2) using a python interface.
- Collaboration with the MTFE group of Prof. V. Terrapon.

Filling of an elastic container
- Strong fluid/solid coupling involving large deformations of the elastic container and solved by CUPyDO.
- Fluid discretized by the PFEM.
- Solid solved by Metafor.

Other Simulation Codes
- **METALUB**: lubricated rollgap model for the simulation of cold rolling.
- **PFEM**: 2D incompressible fluid solver by the Particle Finite Element method.
- **CUPyDO**: coupling interface of fluid and solid solvers.
- **Waves**: basic C++/python framework for the rapid development of simulation codes.

University of Liège, Dept. of Aerospace and Mechanical Engineering, Liège, Belgium.
jp.ponthot@uliege.be, r.boman@uliege.be